
JOURNAL. OF COMPUTATIONAL PHYSICS 33, 118-150 (1979) 

A Multi-Surface Method of Coordinate Generation 

PETER R. EISEIUN* 

Scientific Research Associates, Inc., P.O. Box 498, Glastonbury, Connecticut 06033 

Received May 17, 1978; revised October 25, 1978 

A fast, direct, multidimensional method of coordinate generation has been developed 
to match boundaries with coordinate surfaces and to control the manner in which other 
coordinate surfaces leave the boundaries. When applied to the numerical solution of 
boundary value problems, not only are complex domains mapped into simple ones, but 
also the mesh near the boundaries can be made to conform with a prescribed form. Par- 
ticularly useful prescriptions are the specifications of mesh distributions and angles. Sample 
applications are the local modeling of boundary layer coordinates and the smooth attach- 
ment of one coordinate system to another. In the latter case, a number of coordinate 
systems can be used as building blocks to form one large mesh. Simple examples of these 
applications, and more, are presented. Since the method of coordinate generation is based 
on a direct use of the bounding surfaces and certain intermediate control surfaces, it is 
referred to as a multi-surface method. 

The study of a practical problem is often formulated as a boundary value problem 
with a complicated geometry. In a numerical solution, the problem domain is to be 
discretized; for a reasonable level of accuracy, it is important to adequately represent 
the associated boundaries and adjoining regions. Whether internal or external, 
the boundary regions can be represented in a well-ordered sense by one or more 
coordinate transformations. Since coordinate transformations only map simply 
connected domains one-to-one and onto a rectangular domain, a combination of 
them are needed for more general domains. With branch cuts and other methods 
for smoothly connecting one system to another (or even itself), a wide variety of 
problems can be studied. To achieve the necessary means for smoothly connecting 
systems, it is imperative that coordinate angles can be specified with respect to system 
boundaries. Such specifications, and more, are available with the method of coordinate 
generation presented herein. Moreover, the method is fast, direct and multidimen- 
sional. As such it can economically be applied as a mesh generator for a finite difference 
method, a finite volume method (Refs. [l-2]), or a finite element method (Ref. [3]). 

The simultaneous specification of boundary locations, angles and other higher 
order properties is not as readily available with other methods of coordinate 
generation. Conformal coordinates are generally too constrained to permit such speci- 
cations (e.g., Ref. [4]). Here, it is even difficult to prescribe mesh distributions along 
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the boundaries, and in any case, it is not readily extendable beyond two dimensions. 
To overcome these problems, methods based upon second order elliptic partial 
differential equations were developed (Refs. [5-lo]). In these methods, a Poisson 
equation is given for each coordinate direction of the problem domain. The source 
terms, referred to as.forcing functions, are used to control the locations of coordinate 
curves. Such a control is a result of the maximum (minimum) principle for sub- 
harmonic (superhamonic) functions. This principle also insures that coordinate curves 
of the same family do not intersect. With specified forcing functions, the equations 
are numerically solved in the inverse form, derived by interchanging independent and 
dependent variables. The boundary conditions over a rectilinear domain are now either 
boundary locations or branch cuts in the problem domain. Corresponding to locations 
and branch cuts are Dirichlet and periodicity conditions. However, both conditions 
cannot be simultaneously applied to any one boundary without overspecifying the 
second order system. Consequently, the location of branch cuts cannot be prescribed 
arbitrarily in advance. If cuts with only Dirichlet conditions are specified, then the 
transformation is generally not differentiable across them. An example of an airfoil 
with a specified linear cut from the trailing edge was presented by Steger (Ref. [S]). 
An additional example, is the imposition of a periodicity condition for a cascade of 
airfoils. This was presented by Ghia, Ghia and Studerus (Ref. [9]). In each example, 
differentiability is lost along the cuts. Apparent femedies would be either to increase 
the order of the system so that more boundary conditions could be applied or to 
devise a more clever specification of forcing functions. In the former remedy, the 
maximum (minimum) principle would probably be lost. In the latter, the application 
of the control would present difficulties. 

The limitations imposed by the restrictions on boundary data are removed with 
the method of coordinate generation presented in this paper. The method is a generali- 
zation of the method presented in Eiseman (Ref. [ll]). In that work, a coordinate 
system was generated directly from two carefully parameterized bounding surfaces. 
Points corresponding to a given parameter value determined a coordinate line between 
the two surfaces. The remaining coordinate curves were then given by a linear inter- 
polation along these coordinate lines. The result was a generalization of both boundary 
layer and spherical coordinates. A key part of the development was clearly that surface 
parameterizations were used to properly distribute points along the two bounding 
surfaces. 

With the intent of specifying angles and other higher order properties, the multi- 
surface method presented herein is developed by introducing intermediate surfaces 
between the bounding surfaces. Once all surfaces are established, the respective para- 
meterizations are used to control the desired properties. This control comes from the 
relative surface locations corresponding to any given parameter value. Associated 
with these locations, there is a piecewise-linear curve connecting the bounding sur- 
faces. The vector field tangent to all such piecewise-linear curves is, however, dis- 
continuous across the intermediate ‘surfaces. To create a smooth vector field, this 
tangent field is replaced by a smooth interpolation of a discretization of the tangent 
field itself. The integral curves (Ref. [12)) of the smooth vector field are the coordinate 
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curves which determine the general multisurface transformation. In the earlier work 
of Eiseman (Ref. [ll]), these curves were the coordinate lines upon which a linear 
interpolation was performed. 

Throughout the development of the multisurface method, there is a corresponding 
sequence of examples. For simplicity and for comparative purposes, these consist 
of a sequence of coordinate systems generated about a fixed ellipse with a fixed 
distribution of surface points. The fundamental properties, that arise from both 
surface locations and distributions, are illustrated in this sequence. Typical properties 
are the controls on the mesh at the boundaries, the controls on the global mesh distri- 
bution and the controls on the location of coordinate curve inflection points. 

After the sequence of elliptic examples, a more complex example is presented. 
It is that of a symmetric airfoil with a linear branch but from the trailing edge. This 
example was selected for comparative purposes since it was previously attempted 
both by Steger (Ref. [8, Figs. 2-41) and by Thompson et al. (Ref. [7, Fig. 31). In 
Steger’s case, the wake line was specified by Dirichlet conditions; in Thompson et al., 
by periodicity conditions. As a result, Steger obtained a cut with tangent discontinuities 
(across it); Thompson et al. obtained a true branch cut but could not specify the 
location of mesh points along it. By symmetry, however, they did obtain the cut as 
a line. Without symmetry this would clearly not be possible. In the multisurface 
method, a higher degree of mesh control is available. In the case presented, both 
locations and angles are specified for the cut. In addition, the wake region is smoothly 
blended into a Cartesian coordinate system. 

The mesh control, inherent in the multisurface method, can also be used in compo- 
sition with other transformations. In such cases, a sequence of simple transformations 
typically will map a given region nearly into some desired shape. At this stage, 
a further mapping is needed so that the desired shape is mapped precisely. With 
conformal transformations, a Fourier analysis is often used to preserve conformality. 
Sometimes, however, a lesser standard is desired. Some examples are the sheared 
parabolic coordinates in Jameson and Caughey (Ref. [2]) and the nacelle coordinates 
in Caughey and Jameson (Ref. [13]). In each case, a shearing process leads to mild 
nonorthogonality along the boundaries. This nonorthogonality, however, can be 
removed with an application of the multi-surface methods in place of the shearing 
process. The application, here would be for two or three dimensions. The additional 
computation time would be neglibible. 

To demonstrate the multidimensionality of the method, an example of a three- 
dimensional coordinate system is presented as the last example. In three dimensions, 
the generation and parameterization of surfaces is more complicated than in two 
dimensions. To avoid such complications, this example is given in an analytically 
defined form. 

THE GENERAL MULTISURFACE METHOD 

When a boundary value problem is posed and when curvilinear coordinates 
are to be employed, the bounding surfaces are to become coordinate surfaces of some 
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coordinate system or systems. In many problems it is also important to control both 
the distribution and inclination of the coordinate curves which intersect the bounding 
surfaces. Further control on the curves may also be needed if it is desired to join 
together distinct coordinate systems in a uniform manner which yields continuous 
coordinate derivatives up to a given order. To obtain this type of control and to 
maintain efficiency in the generation process, an algebraic coordinate generation 
technique based upon the creation of certain nonintersecting intermediate surfaces 
has been developed. Although, the method is valid for higher dimensions than two, 
most of the subsequent development shall be restricted to only two dimensions for 
ease of exposition and simplicity. 

In two dimensions the bounding and intermediate surfaces are space curves. 
For a common parameter t, these curves can be represented by the sequence of 
vector valued functions PI(t), P*(t),..., P,(t) where the ordering of the curves yields 
a simple partition of the space between bounding curves. In addition, for each fixed 
parameter value, it is assumed that the unique piecewise linear curve obtained by 
connecting successive points is a curve which extends from boundary P, to boundary 
P, and intersects each surface precisely once. Furthermore, it is assumed that the 
family of all such piecewise linear curves have no intersection between themselves. 
These assumptions are enough to guarantee the existence of a vector field tangent 
to the family of piecewise linear curves, discontinuous across the intermediate surfaces, 
and otherwise of the same level of smoothness as the original surfaces. The existence 
of such a vector field allows one to construct certain other vector fields which are 
smooth enough to be differentiable to a prescribed order. It is these vector fields 
which can be used to generate coordinate systems in the desired manner. The integral 
curves (Ref. [12]) of the vector field are the coordinate curves which connect the 
bounding surfaces; the other coordinate curves are the corresponding level curves. 

A vector field tangent to the piecewise-linear curves is given by VK = AK@‘K+l(t) - 
P,(t)] between the Kth and (K + 1)st surfaces where K is taken to vary (if IZ > 2) 
from the first bounding surface to the final intermediate surface. The coefficients A, 
are scalars which determine the magnitude of the vectors but not the directions. 
A semi-discrete vector valued function can now be defined as a map from rK into VK 
for a partition 0 = rl < r2 < **a < I,-~ = 1 and for K = l,..., n - 1. A suffi- 
ciently smooth vector field V(r, t) is then obtained by the interpolation V(r, , t) = 
V,(t). An illustration of one of the piecewise linear curves and its tangents is given 
in Figure 1. With r as a continuous independent variable on the unit interval, the 
r-derivative of the coordinate transformation P(r, t) must be equal to the interpolant. 
Specifically, 

ap n-1 

- = V = C k(r) VK(~> 
ar K=l 

(1) 

where #K(ri) is unity at K = j and vanishes otherwise. Since the coordinate trans- 
formation must be obtained from an integration in the r-variable, the interpolant 
tiK must be continuously differentiable up to an order which is one less than the level of 
smoothness desired for the coordinates. If the integral of Eq. (1) has a constant of 
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FIG. 1. The interpolated vectorfield V given in the discrete form V(TK , r) = VK(t) for partition 
0 = rl < rz < *.* < rnml = 1 and a tied t. 

integration equal to PI(t) and if the quantities AK+&) integrate to unity over the 
domain 0 < r < 1, then a coordinate transformation which matches the desired 
bounding surfaces is obtained. This also determines the original vector field since the 
coefficients must be given by 

AK = [Jy #K(X) q-l (2) 

for K = l,..., n - 1. With this data, the coordinate transformation becomes 

n-1 J; h(x) dx 
W, t> = Pdt) + 1 K-l J; $ 

K 
0)) du PK+lw - P&l (3) 

It is a simple matter to check that P(0, t) = PI(t) and P(l, t) = P,(t). In the latter 
case the result follows from a telescopic collapse of the summation. On examination 
of Eq. (3), it is also apparent that each interpolatory function $K need only be deter- 
mined up to any product with a nonzero real number. The geometric implication is 
that the vector field interpolation is an interpolation only on vector directions. 

POLYNOMIAL TRANSFORMATIONS 

The practical implications of the coordinate transformation, presented in Eq. (3), 
are best illustrated by a sequence of useful examples. Specifically, we shall examine the 
cases where the $K are polynomials of degree n - 2 for n = 2, 3,4. For n = 2 the 
polynomial of degree 12 - 2 = 0 is a constant function. On integration it is found 
that A,$, is unity and that the resulting transformation from Eq. (3) is 

W, 0 = P&> + rl?&> - PI(t)1 (4) 

When r is replaced by a distribution function, the class of transformations studied 
in Ref. [ll] is obtained. The coordinate curves consist of a family of straight line 
segments connecting the bounding surfaces at common t-values, and a second family 
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of level (r = constant) curves which are the result of a uniform linear deformation, 
along the line segments of the first family. As noted in Ref. [l 11, a considerable amount 
of control can be exercised by a judicious choice of parameterizations. In that study 
one bounding surface was parameterized for a distribution of points which con- 
formed to a cascade periodicity requirement; the other bounding surface, for an ortho- 
gonality requirement at the surface itself. A computed cascade coordinate system with 
an actual turbine blade shape was presented in Ref. [l 11. However, since the coordinate 
curves connecting bounding surfaces are straight lines, it is generally not possible to 
enforce an orthogonality requirement at both bounding surfaces. Moreover, the 
only possible specifications are for positions on each surface, for angles on each 
surface, or for a position on one surface and an angle. on the other. In summary, 
there are only two degrees of freedom. 

The case with n = 3 will add another degree of freedom. Here, the polynomial 
degree is n - 2 = 1 and the partition of the unit interval is given by 0 = rl -C r2 = 1. 
Each #i must vanish at r, if i # j and must be nonzero at ri . The simplest such 
functions are & = 1 - I and I/~ = r. Upon substitution into Eq. (3) and after some 
simplification, the transformation becomes 

P(r, t) = (1 - r)” PI(t) + 2r(l - r) Pz(t) + r2Ps(t) (5) 

The coordinate curves connecting the bounding surfaces P, and P, are now biparabolic 
curves which leave P, in the direction of P2 - P, and end on P, from the direction 
of P, - P, . This should be clear.on examination of 

aP 
- = W - r)[P2W - PI(t)1 + 2rPdQ - P2Wl ar 

= 2P2(0 - P&N + 2@,(t) - 2P&) + PdOl (6) 

which .is the derivative of Eq. (5) and a special case of Eq. (1). The remaining coor- 
dinate curves are the level curves of constant r which are deformations of the boundary 
curves along the biparabolic curves. An example of a transformation, generated 
from Eq. (5), is presented in Fig. 2. In the example, the inner boundary P, is an ellipse 
with a major axis of unity and a minor axis of .25. The outer boundary PS , the inter- 
mediate curve P2 , and a temporary curve Q were generated as a trace of points, 
respectively, 2.4, 1.2, and .25 units away from the elliptical surface in the direction 
of the outward pointing unit normal vector. Arc length parameterizations were given 
to P, and Q; the latter was then used to parameterize both P, and P, . This was 
accomplished by assigning constant parameter values along the normal direction. 
In general, the distance of Q from the ellipse is interpreted as a measure of the degree 
to which mesh points become concentrated in regions of higher curvature. From the 
construction of P, , it is clear that the biparabolic curves must leave the elliptical 
surface orthogonally. With the concurrent specification of positions on each boundary, 
orthogonality on the outer boundary cannot be obtained. In summary, the boundary 
specifications of two positions and one angle is the most that can be applied..AIter- 

581/33/I-9 
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FIG. 2. Coordinates generated from Eq. (5). Outwardly directed curves are biparabolic arcs; 
circumfenzntial curves are uniformly distributed contours. 

natively, it would also be possible to specify two angles but only one position. The 
result is that there are only three degrees of freedom corresponding to n = 3. 

The case n = 4 will lead to yet another degree of freedom. The geometric impli- 
cation is that the curve which connects the bounding surfaces can inflect; and thereby, 
adjust to specifications of both angle and position on each bounding surface. This 
notion is consistent with the anticipated result of employing bicubic curves in the 
r-variable. Within the structure of Eq. (3) an assumed partition 0 = rr < r, < r, = 1 
leads to the functions #I = (r - l)(r - r2), & = r(r - 1), and & = (r - r2) r 
which are defined up to real multiples. The resulting transformation is given by 

P(r, t) = (1 - r)2[1 - urr] PI(t) + (~2~ + 2)(1 - r)” rP2(t) 

+ r2[1 - a2(l - r)] P*(t) + (a2 + 2) rY1 - r) P,(t) PI 

where 
2 

Ql = 3r, (7b) 

and 
2 

u2 = 3(1 - r2) - 1 (7c) 

As in the case with n = 3, it can be observed from Eq. (1) that the bounding curves 
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are intersected at angles determined by the vectors P, - P1 and P, - P,-r , respeo 
tively. When n > 4, the angles can be determined independently by adjusting the 
intermediate curves which are nearest to each boundary. Moreover when n > 6 
the curvature can also be specified by adjusting the pair of intermediate curves which 
are nearest to each boundary. This process can obviously be continued with additional 
degrees of freedom being acquired for each increase in n. Alternatively, it can also 
be continued with nonpolynomial specifications of &. Rather than pursue such 
continuations, the main focus of attention shall be on the case with n = 4 and the 
transformation as stated in Eq. (7). In this case, .as in the previous case with n = 3, 
an example of a coordinate system around the same ellipse is presented. The results 
are depicted in Fig. 3 where it can be observed that the expected orthogonality at 

FIG. 3. Coordinates generated from Eq. (7) with BI = B, = l/3 in Eq. 14. Outwardly 
CUNCS are bicubic arcs; circumferential curves are uniformly distributed contours. 

directed 

each bounding surface is actually attained. This was produced by generating the inter- 
mediate curves PZ and P, with parameterizations that orthogonally aligned them with 
the respective bounding curves P, and P, . As before, the outer bounding curve was 
generated as a trace of points which are a fixed orthogonal distance from the elliptical 
surface. The displacement of each intermediate curve from its corresponding 
boundary was then chosen to be equal to one sixth of the distance between the 
boundaries. In the same manner as in the previous case, the elliptical surface was 
parameterized to concentrate mesh points in high curvature regions; the outer boun- 
ding surface, to be proportional to arc length. 
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MESH CONTROL IN THE OUTWARD DIRECTION 

In both of the elliptical examples of the previous section there is one common 
but subtle point which has some important consequences. It is simply that the coor- 
dinates are uniformly distributed between the bounding surfaces. This observation 
is apparent upon examination of the straight coordinate curves in Figs. 2 and 3. 
Each is vertical or horizontal and is cut into equal increments by the crossing coor- 
dinate curves. 

In the case with n = 3, the intermediate curve was generated to be halfway between 
the boundaries. The straight coordinate curves appeared when, for a given parameter 
value, the corresponding triple of points was colinear. Analytically, the r-dependence 
must vanish from Eq. (6); this means that the tangent vector to the straight coordinate 
curves are each constant vectors. The implication from Eq. (6) is that the intermediate 
curve P, be halfway between the boundaries. Moreover, upon a substitution of this 
halfway condition, Eq. (6) becomes 

_ = P,(t) - PI(C) 
ar 

which is valid for each parametric value t where colinearity is satisfied. In addition, 
the transformation Eq. (5) reduces to the form of Eq. (4) except with a subscript 3 
rather than 2. By continuity there is a uniform distribution of coordinate curves within 
some region containing the straight line segments. However, from Fig. 2 it is clear 
that uniformity extends well beyond most regions of reasonable size. For a satis- 
factory explanation, further analysis is necessary. Since the uniformity here is measured 
in the outward direction from inner to outer bounding surfaces, it is reasonable to 
consider projections onto the vector P, - P, which is aligned with the appropriate 
direction. To simplify the analysis, the scaled vector 

p2 - PI 
* = 11 P, is 
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in Eq. 9 is now evident since S,(O, t) = 0 and S,( 1, t) = 1. The r-derivative, which is 
obtained from Eq. (6), is given by 

1 as -2 = C + r(1 - 2C) 
2 ar 

On integration, with the constant determined by Eq. (lo), the result is 

S, = r[2C + r(1 - 2C)] (12) 

The desired uniformity will now be obtained if the quadratic term in Eq. (12) vanishes. 
When this occurs C = l/2 and Eq. (12) reduces to the uniform distribution S, = r. 
In summary, this choice of C is the natural generalization of the earlier halfway 
condition for straight lines. 

In the case n = 4, we shall proceed directly to an examination of the relative pro- 
jected arc length rather than start with the straight lines. There are now two inter- 
mediate surfaces, and two relative projections along P, - P, . These are given by 

Cl = (PZ - P,) * 3 
and 

c2 = (P, - P3) * ? 

where, in the same manner as before, 

The projections are assumed to be positive so that S, is monotone in r; hence, the 
same conclusions, as in the case n = 3, hold. From here, a short calculation, similar 
to the previous one, leads to the expression 

S, = r[3B, + 3(1 - 2B, - B,) r + (3B, + 3B, 

where 

2r2 c 
B1 = 3r, - 1 I 

and 

20 - r2) 
B2 = 3(1 - r2) - 1 ‘2 

A further calculation leads to the relationship 

4 r21 (144 

U4b) 

(14c) 

Sp(r, t) + SD(l - r, t) = 1 + 3(& - B,) r( 1 - r) (15) 

which is a measure of symmetry in the relative projected arc length of Eq. (14). 
Absolute symmetry occurs when B, = B, for then the relative distance S,(r, t) from 
the inner boundary P, is equal to the relative distance 1 - S,(l - r, t) from the outer 
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boundary P4 . A sequence of symmetric examples are presented with the elliptic 
coordinate systems illustrated in Figs. 3-6. The most notable feature in these figures 
is that as B1 = B2 increases from l/3 to unity, the distribution of coordinate curves, 
although symmetric, become concentrated in the center. Consequently, it is clear 
that symmetry is certainly a weaker condition than uniformity. For uniformity, the 
requirement is that the quadratic and cubic terms in S, vanish. The implication is 
equivalent to Bl = B2 = l/3. However, there is still some leeway since there is some 
freedom of choice in the selection of r2 . Since C, and C, are assumed to be positive, 
it follows from Eqs. (14b-c) that the permissible selections are those for which 
l/3 < r2 < 2/3. The relative projected distances from intermediate surfaces are then 
given by 

and (16) 

over the range of rz . An example with r2 = l/2 was presented in Fig. 3 which was 
both symmetric and uniform. The distances from Eq. (16) along with the bounds 
upon r2 then imply that C, and C, are each bounded above by l/4. Moreover, as 
r2 increases from l/3 to 2/3, the distance C, increases from 0 to l/4 while the distance 
C, decreases from l/4 to 0. Since both C, and C, are monotone functions of r, , it is 

FIG. 4. Coordinates from Eq. (7) with BI = & = l/2 in Eq. (14). The coordinates are symmetric 
with a mild concentration of curves in the center. 
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FIG. 5. Coordinates from Eq. (7) with BI = B2 = 213 in Eq. (14). The coordinates are symmetric 
with a concentration of curves in the center. 

FIG. 6. Coordinates from Eq. (7) with Bl = B2 = 5/6 in Eq. (14). The coordinates are symmetric 
with a severe concentration of curves in the center. 
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also possible to express any two of r2 , C, j C, as functions of the third. For example, 
if C, is taken as the independent variable, then the others become 

and 

1 
r2 - 3 - 6C, 

c 2 =A 4 ( 4G-1 3c,-1 1 

07) 

as C, varies between 0 and l/4. 

APPLICATION OF UNIFORMITY CONDITIONS 

The importance of the uniformity conditions is evident from the additional control 
which is achieved. Specifically, a uniform distribution of coordinates is desirable if 
coordinate systems are to be joined together and/or if a coordinate distribution 
function is to be applied along the curves connecting the bounding surfaces. 
To illustrate the utility of the uniformity controls, an example shall be considered. 
Suppose, as before, that coordinates are to be generated around the same ellipse 
with the same surface parameterization. However, this time, suppose that the outer 
boundary is a circle on which a polar coordinate system is to be joined and used for 
the far field. In addition, assume that the circle P, and the ellipse P, are centered 
about the same origin. For convenience, let this origin also be the origin of the under- 
lying Cartesian coordinates which are used to express the Pi for each i. 
Then M = 1) P, 11 is the radius of the circular outer boundary of the inner coordinate 
system. Moreover, for each t, if P3(t) is chosen to be constant in magnitude and parallel 
to P4(t), then P4(t) - P3(t) is identified with a directed radial line segment between 
two concentric circles P, and P, . As such, the magnitude N = /I P, - P, I/ is inde- 
pendent of t; consequently, the inner coordinate system is extended for r > 1 by the 
polar system 

x = [3a,N(r - 1) + M](cos ~9, sin 0) (18) 

for e = t/M and with a, given by Eq. 7c. A direct application of Eq. 1 can be used 
to verify that the normal derivatives across the juncture r = 1 are indeed continuous. 
The result is that the two coordinate systems are now joined to form one large system 
with continuous derivatives. 

The derivative continuity, however, does not imply that the coordinates are uni- 
formly distributed. This point is well illustrated in Fig. 7 where uniformity conditions, 
with r2 = l/2, have been applied only in the vertical direction. As a result, the coordi- 
nates deviate from uniformity as the horizontal direction is approached. Since the 
intermediate surface P, was taken to be a constant normal distance from the ellipse, 
the points in the nonuniform regions are bunched somewhere in the middle region 
between the bounding curves. The severity of the nonuniformity is a function of the 
size of the.outer boundary of the inner coordinate system. In the current case, it was 
generated by circle of radius 2.4. In Fig. 8; the same case has been repeated, except 
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FIG. 7. A coordinate system with a circular outer boundary of radius 2.4. The polar coordinates 
of Eq. (18) can be used for an extension into the far field. 

FIG. 8. A coordinate system with a circular outer boundary of radius 4.8. The polar coordinates 
of Eq. (18) can be used for an extension into the far field. A good approximation to uniformity in the 
outward direction is obtained. 
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with a radius of 4.8. The effect is that uniformity is essentially retrieved. At this stage, 
if it is desired to distribute points in the outward direction, then the r-variable can be 
replaced by a distribution function R = R(r). Since the uniformity corresponds to 
outward linearity in r (Eqs. (14) and (16)), the distribution function is applied relative 
to uniform conditions. The result is a direct control on the outward mesh distribution. 

AN EXAMINATION OF THE CURVES CONNECTING BOUNDING SURFACES 

With four surfaces (n = 4) and a polynomial vector field interpolation (Eq. I), the 
resulting coordinate systems (Eq. (7)) have a family of curves which can inflect as 
the bounding surfaces are connected. The inflections are clearly evident from the 
sequence of coordinate systems (Figs. 3-8) that were generated about a given ellipse. 
In each case, the coordinate curve inflections occurred in a well-centered fashion; 
primarily due to the symmetry in the outward direction (B1 = B, in Eq. (15)). In some 
instances, however, it may be desirable to move the curve inflections to an off-centered 
position. The basic control on this matter is determined by the location of the inter- 
mediate surfaces. Suppose, for example, that the inflections are to be pushed towards 
the outer bounding surface P, . The intermediate surfaces Pz and Pa must then be 
chosen so that lines in the direction P, - P, are followed by coordinate curves most 
of the way across the coordinate system. In the case when the surface points Pi(t),..., 
P4(t) are colinear, the given lines are followed precisely. By continuity, a close approxi- 
mation of the lines occurs when there is a slight deviation from colinearity. A measure 
of this deviation is given by 

W) = max[ll P&) - P2(0 II, II Pdf) - P&)lll 

Since the inflections are to be pushed away from the inner surface P, and towards 
the outer surface P, , the coordinate vector relative to the inner surface P(r, t) - PI(t) 
should closely follow the fixed direction Pz(t) - PI(t) for most of the distance between 
the bounding curves. A small value of M(t) should cause a close uniform approxi- 
mation. For larger values, the deviation should grow with increasing r. The rate of 
growth and the expected uniform approximation with M(t) can be quantified more 
precisely. Specifically, for r < 1.5r, , an application of the triangle inequality to 
Eq. (7) yields the bound 

IIW, 0 - P&)1 - WI?&) - Pdt)lll G (2 + 4 M(t) r2(1 - r> (204 

where 
h(r) = 1 - (1 - r)2(1 - ulr) CW 

Thus, the deviation from coordinate linearity is linear in M(t) and quadratic with 
increasing r. In addition, the coefficient h(r) increases monotonically to a maximum 
at h(r,) = r22(3 - r2)/(3r2 - 1) and then monotonically decreases to unity with a 
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zero slope when r = 1. On the increasing part, it passes through unity at 
r = I.%, - 5. At this point, the full length of the vector Pz(t) - P&) is used in 
the bound of Eq. (20). Beyond this point, the effect of the other surfaces P, and P, 
become more important. Consequently, the region between the surfaces P, and P, 
is determined by r values less than 1.5r, - 5. For most of the region, the pertinent 
family of coordinate curves are almost linear. By symmetry, the same reasoning leads 
to the bound 

lI[W, t) - P&N - h(r)[P&) - Pl(t)lll d (2 + al) M(t)(l - rY r (214 

where 

and 
h(r) = 1 - r2[1 - a,(1 - r)] WO 

MO) = maxII P&l - P2Wll, II p2(t> - ~10)111 cw 

This is valid for 1.5r2 - .5 < r < 1 and is applicable to the case when inflection 
points are to be pushed from the outer surface P, towards the inner surface P, . 
The region between the surfaces P, and Pa is now determined by r-values for which 
l.5r2 < r < 1. As before, the pertinent family of coordinate curves are almost linear 
for most of this region. The near linearity can be observed from the examples presented 
in Figs. 9-12. In each case, the inner bounding surface P, is the parameterized ellipse 
of the previous examples; the outer bounding surface P, is 2.4 units away from the 
ellipse (in the normal direction); and r2 = .5. In Figs. 9-l 1, the intermediate surface 
P, is taken .4 units away from P, while P, is taken 8, 1.0, and 1.2 units away from 
P, , respectively. It is clear that, with increasing distance for P, , the linear portions 
extending from P, have increased. As a result, the coordinate curve inflections have 
been pushed closer to the elliptical surface P, . However, it can also be observed that 
there is a limit to which the inflections can be pushed without altering the location 
of the inner intermediate surface P2 . In Fig. 12, the example in Fig. 11 is repeated 
except with the intermediate surface P, pulled back to only .2 units from P, . This 
relaxed condition clearly allows the coordinate curve inflections to occur closer to 
the ellipse. Since r2 has been set to .5, the bound in Eq. (21a) becomes 6(1 - r)2 rM(t) 
and the coefficient (Eq. (21b)) becomes h(r) = 1 - r2(4r - 3). Now, for example, 
when r decreases from 1. to 0.85, the quantity h(r) increases from 0. to 0.71 while 
the bound increases from 0. to O.llM(t). On this range of r, a coordinate curve 
approximately foljows the line from P4(t) to PJt) with the largest deviation occurring 
at r = 0.85 when it is to within 0.1 M(t) units of the point Pa(t) + 0.71 p3(t) - P4(t)]. 
This result is consistent with the examples in Figs. 9-12. The same reasoning also 
applies to the symmetric case. Here, the subscripts 3 and 4 are replaced by 2 and 1, 
respectively; the definition of M(t) and h(r), by Eq. (20); and r, by 1 - r. The effect 
of the symmetric result is evident from the comparison of Fig. 12 with Fig. 11. There 
the normal distance of P, from P, was halved. In correspondence, the nearly linear 
portions of the outwardly directed curves were abo halved as they left the elliptical 
surface. 
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FIG. 9. Coordinates with P, taken at 0.4 units from P, and with P, taken at 0.8 units from PI. 
In Eq. (14), Bl = l/3 and Bz = 213. 

FIG. 10. Coordinate with Pe taken at 0.4 units from P, and with Pa taken at 1 .O units from P, . 
In JZq. (141, B, = l/3 and B, = 5/6. 
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FIG. 11. Coordinates with P, taken at 0.4 units from P, and with P, taken at 1.2 units from P, . 
In Eq. (14), Bl = l/3 and B2 = 1. 

FIG. 12. Coordinates with P, taken at 0.2 units from P, and with P, taken at 1.2 units frbm P, . 
In Eq. (14), Bl = l/6 and B, = 1. 
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The extent of approximate linearity near each bounding surface leads to yet 
another observation. As r and 1 - r vary from 0 to 0.15 most of the nearly linear 
portions are covered. This leaves .7 units in r for the rest which may contain a curve 
inflection. As a consequence, a uniform partition of 0 < r < 1 will more densely 
pack mesh points off of the nearly linear portions if such portions extend through 
most of the curve arc length. This can be observed from Figs. 3-12. From a careful 
inspection of the figures one may also note that, although this region contains both 
the coordinate curve inflections and the mesh packing, the points of curve inflection 
and greatest mesh packing are close together but not precisely aligned. In the latter 
case, a precise quantitative measure can be given. The mesh point packing corresponds 
to an inflection in the function S B , presented in Eq. (14). The point of inflection is 
easily found to be 

2B1+ B, - 1 
r* = 38, + 3B, - 2 (22) 

when this quantity exists and is bounded between 0 and 1. In the symmetric case 
Bl = B, and, as might be expected, r* = l/2. In the uniform case B1 = B, = l/3 
and both the numerator and denominator of Eq. (22) vanish. However, the limit 
(as l/3 is approached) is still at l/2 so that such cases may be filled in by continuity. 

MESH DISTRIBUTION IN THE OUTWARD DIRECTION 

In the general multisurface transformation of Eq. (3) and in the particular appli- 
cations expressed in Eqs. (5) and (7), the r-variable is not transformed in any way. 
However, the possibility of replacing it by a suitable distribution function, R(r), 
has been mentioned; in fact, the main purpose for considering mesh uniformity 
was to provide a basis for which an anticipated mesh distribution function would have 
a direct effect. That is, a uniform partition of 0 < r < 1 would go into a nonuniform 
partition of 0 < R(r) < 1 which, in turn, would cause a proportionate nonuniform 
distribution of coordinate curves in the outward direction, A distribution function 
which is particularly well suited for the resolution of attached boundary layers is the 
function 

R(r) = mr + (1 - m) [ 1 - taniatfg “1 (23) 

which was presented in Ref. [ll]. With an assumed boundary layer region near the 
surface P, , the distribution function approximately follows the line y = mr with 
a rate of departure controlled by a damping factor D. The slope m is usually chosen 
to correspond with an idealized uniform mesh for the expected boundary layer region. 
As such, it must be bounded between 0 and 1. Since a continually expanding mesh is 
desirable for far field applications, it is also worth noting that the only inflection point 
of R occurs at the outer edge of the coordinate system which corresponds to R(1) = 1. 
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Had the inllection point occurred within the unit interval, then the mesh would have 
expanded up to that point and contracted beyond it. 

A further property of the distribution function (if m < 1) is the existence of a single 
point of maximum curvature. In a global sense, the distribution has a knee at this 
point. Between the adherence to the line R = mr and the subsequent expansion 
for the far field there is a transitional region centered about this knee. Consequently, 
an alternate and geometrically attractive way to specify the distribution is to specify 
the location of the knee and then compute the corresponding parameters m and D. 
The line connecting the desired location with the origin determines an upper bound 
on the possible slopes m. Also, damping factors D between 5 and 5.5 tend to cover 
most cases of interest. A discretization, over such intervals for m and D, leads to a set 
of distribution functions from which a selection can be made. The function selected 
from the set is one which minimizes the distance from the knee to the desired 
point. In each case, the location of the knee is computed from a partition of r into n 
equally spaced points rK = (K - I)/@ - 1) with corresponding function evaluations 
Rx = R(rK)for K = 1,2,..., n. Here, the mesh eccentricity (RK+l - RK)/(RK - RKel) 
increases from unity, reaches a maximum near the knee, and decreases back towards 
unity. The location of the maximum is then taken as the knee location; the distance 
above is computed; the minimization over the set is performed; and the desired para- 
meters m and D are obtained. An example with the parameters selected in this fashion 
is presented in Fig. 13. Here, the basic uniform transformation of Fig. 3 is used 

FIG. 13. A composition of the uniform coordinate transformation of Fig. 2 with the outwardly 
directed distribution of Eq. (23). The specification was for one half of the mesh points to go into 
one quarter of the outward distance. 
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with r replaced by R(r). The desired knee location was specified for l/2 of the mesh 
points to go into l/4 of the normal outward distance. The computed parameters 
were m = 0.15 and D = 1.6875. It can readily be observed that the distribution is 
very close to the desired specifications due to the uniformity (of the basic transfor- 
mation) in the outward direction. In the nonuniform case, the distribution function 
can also be useful, even without the capability of coming close to a predetermined 
outwardly directed mesh. In Fig. 14 such a case is presented. Here, the case presented 

FIG. 14. The composition of the transformation of Fig. 6 with the outward distribution function 
of Fig. 12. 

in Fig. 7 is repeated with the distribution function used in Fig. 13. The effect is that 
coordinate loops which were centered between bounding curves are now pulled closer 
to the elliptical surface. The example of Fig. 14 is the last of the sequence of elliptical 
examples from Eq. (7). For reference and for comparative purposes, the various 
numerical input parameters for this sequence are summarized in Table I. 

THE NUMERICAL ANALYSIS AND GENERATION OF SURFACE DATA 

A certain degree of flexibility is obtained when the surfaces Pi of Eq. 3 are each 
given or generated as a sequence of data points. In such cases, there is no restriction 
to any particular functional form. However, it will be assumed that the data comes 
from an underlying functional form for which a local Taylor series representation is 
valid. Then, the derivative information at the data points can be estimated directly 



A MULTISURFACE METHOD OF COORDINATE GENERATION 139 

TABLE I 

Parameters for the Elliptical Examples of Eq. (7) 

Figure 
number 

Radial distribution 
(if not uniform, 

parameters of Eq. (23) 
are given) 

PP 
P2 P, (circular if denoted as 

(orthogonal (orthogonal a radius, otherwise, 
distance distance it is the distance 
from P,) from P& from P1) 

3 uniform 0.4 0.4 2.4 
4 uniform 0.6 0.6 2.4 
5 uniform 0.8 0.8 2.4 
6 uniform 1.0 1.0 2.4 
7 uniform 0.4 0.4 radius of 2.4 
8 uniform 0.8 0.8 radius of 4.8 
9 uniform 0.4 0.8 2.4 

10 uniform 0.4 1.0 2.4 
11 uniform 0.4 1.2 2.4 
12 uniform 0.2 1.2 2.4 
13 m = 0.15, D = 1.6875 0.4 0.4 2.4 
14 m = 0.15, D = 1.6875 0.4 0.4 radius of 2.4 

LI The inner boundary P, is an ellipse with a major axis of unit length and a minor axis of 0.25 units. 
b The parameterization for P, is the orthogonally aligned arc length taken from a curve 0.25 units 

away. 
c The parameterization of P, is its arc length normalized to the range of the P, parameterization. 
d The parameterizations for P, and P, are the orthogonally induced parameterizations from P1 

and Ej4 , respectively. 

from suitable finite differences. From this information, an application of Hermite 
interpolation can be used to locally and uniquely specify the curve and its derivatives. 
The totai specification is important since curve fits can be obtained with a single local 
array which moves along each surface Pi . In this manner, data is generated only when 
it is needed. The need occurs only at points corresponding to mesh point para- 
meters., Since there are usually fewer mesh points than data points, the amount of 
interpolation is reduced. By comparison, if a parametric spline fit were to be applied, 
then several disadvantages would result. The problem occurs because the spline fit 
is generally a global fit. This means that there is a fit between every pair of data points. 
Moreover, this process is implicit; it requires the inversion of a large banded system. 
As a result, there is an increase in storage and computation. In three-dimensional 
applications of Eq. (3) (where t is replaced by a pair of parameters) the increase is even 
more severe. 

The salient features in the local constructive process are clear from an analysis of 
the four surface transformation of Eq. (7). In this case, it is sufficient to consider 
one bounding surface along with the closest intermediate surface. The other pair is 

581/33/1-10 
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treated in an identical way. Consequently, suppose that the first bounding surface 
P, is given in discrete form by the ordered sequence of data points (P,, ,..., P,,). 
A parameterization of these points is given by a monotone sequence (tl ,..., tN) 
where each ti is a scalar (real number) label for a corresponding PIi . Derivatives with 
respect to such a parameterization can be estimated by finite differences. For nota- 
tional simplicity, let f denote a component of P, . In terms of half point slopes, 
nh112 = (h+l -jJ/(ti+l - tJ, the second order accurate finite difference estimate 
for (dfldt), is given by 

(Df)i = Ti--mmi+l/2 + Ti+l/zmi-112 (24) 

where Tip,,, = (ti - ti-l)/(ti+, - ti-&. TO order (tf+l - ti) - (ti - tieI), the esti- 
mate for the second derivative (d2f/dt2)i is given by 

- 4-112 
(D"f)i = 7.yc;+l 

- Ll) 
(25) 

For a closed surface such as the ellipse in Figs. 2-14, the points on either end can be 
identified as matching. Consequently, Eqs. (24)-(25) can be applied directly on either 
end. If, however, the surface is open at each end, then it can be extended by extra- 
polation with the addition of bogus data points. This also would permit a direct 
application of Eqs. (24)-(25). The remaining alternative would be to apply one-sided 
differences instead of Eqs. (24)--(25). 

The first step in the constructive process is to determine the unit tangent vector 
to P1 at each point in the sequence (PI1 ,..., PIN). For this purpose, the parameter 
sequence (tl ,..., tN) is taken as the cumulative chordal length between successive 
points starting at P,, and ending at P,, . The corresponding finite difference sequence 
((DP,), ye.., (DP1)N) is clearly a sequence of tangent vectors. Since the parameterization 
is an approximation to arc length and since the actual derivative with respect to arc 
length is a unit vector, the finite difference sequence is a sequence of vectors which are 
nearly of unit length. A subsequent normalization can then be applied to remove 
any small deviations from unit length. The result is a unit tangent sequence (or ,..., TV) 
from which a sequence of outwardly.pointing unit normal vectors (n, ,..., nN) can 
be constructed. At this stage, the original data sequence can be reparameterized 
by using the discretely generated tangent-normal frame. In the case of the elliptical 
examples in Figs. 2-14, a discrete surface 

(P,, + ch ,..., PIN + mN> (26) 

was generated solely for the computation of its cumulative chordal length. When 
c = 0, the cumulative chordal length is an approximation of arc length along the 
ellipse. However, as c increases, the approximation approaches the arc length of a 
circle. Upon normalization by c, it approaches the arc length of the unit circle. Thus, 
in the limit of large c, the parameterization approaches the integral of the curvature 
along the ellipse (Ref. [12]). As a result, the control variable c balances between 
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a uniform arc length distribution and a distribution which concentrates mesh points 
in high curvature regions. The computation of this parameterization can be done 
locally with the new parameters being sequentially loaded into an array (tl ,..., fN). 

From this stage, the remaining construction is executed only at the desired mesh 
points. Since these are fewer in number than the data points, a computational economy 
is clearly achieved. If M mesh points are desired, then they must be associated with 
the parameter values t, + K d t where K = 0, l,..., M - 1 and d t = (f, - tJ 
(M - 1). Each such parameter value will then be contained in some interval from the 
collection [ti , Q,..., [tNAz, t,-l), [t,-, , tN]. Suppose, for example, that a given 
mesh parameter is contained in the interval [tidl , ti) and that a transformation with 
two continuous derivatives is desired. On each endpoint, both function and derivative 
information are needed for both the bounding surface P, and the first intermediate 
surface P, . The derivative data at tiWl and ti are derived from the first two finite 
differences (Eqs. (24)-(25)) which require function data at tie2 , tiei , ti , ri+l . For 
P, the data are directly available; however, for P, it must be created. This means 
that a unit tangent-normal frame must be constructed along Pi . In the case of the 
elliptic examples (Figs. 2-14), the data are generated along the normals with a constant 
value for c in Eq. (26). The value of c and the use of Eq. (26) is, of course, different 
from its original use. The construction, however, depends upon the function data 
along tfe3 ,..., ti+z since finite differences (Eq. (24)) must be employed to determine the 
frame. Here, one-sided differences are ruled out so that the curve representation is 
unique. If i = 2, 3, N - 1, or N, then endpoint identifications must used for closed 
surfaces; extrapolated bogus points, for open ended surfaces. In any case, the local 
array must contain the six parameter values, the six associated P,-data points, and 
the four calculated P,-data points. A local calculation will then yield the derivative 
estimates up to second order at tipi and tj . At the given mesh parameter, a local 
Hermite interpolation (Ref. 3) can now be applied to obtain the function values and 
the first two derivatives of both Pi and P, . To accomplish this, the interval [timi , ti] 
is linearly transformed to the unit interval; an expansion in terms of the Hermite 
quitics is performed; and the results are transformed back. For reference, the Hermite 
quintics on the unit interval are the unique quitic polynomials #K and +K which 
satisfy (dj/~~/&j)(m) = 6,, a,, and (@$J&)(m) = ajK a,1 . The Kronecker 
delta ajK is defined to be unity when j = K and to vanish otherwise. In detail, the 
Hermite quitics are 

*o(x) = (1 - x)~(~x~ + 3x + 1) 
a&) = (1 - x)3(3x + 1) x 
#2(x) = .5(1 - x)” x2 

Md = $430(1 - 4 
d&4 = -$dl - 4 
42(x) = $20 - 4 

(27) 

As the local array is moved throughout the mesh parameters, the calculated mesh 
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point data for P, and P, can be loaded into a global array. The storage needed here is 
12M for the components from P, and P, , for the evaluations of a function and two 
derivatives, and for the M mesh points. In a similar manner, the bounding surface 
P, and its closest intermediate surface P, are computed locally and loaded into a 
global array of size 12M. In the latter constructive process, it is usually necessary to 
renormalize the parameterization so that its length and orientation corresponds to 
that for P, and P, . In addition, it must also be appropriately aligned with the former. 
In the case with the elliptic examples (Figs. 2-14) the alignment is achieved by 
assigning the smallest parameter values to the respective points where P, and P4 cross 
the positive x-axis. Now if K mesh points are to be used for the outward distribution 
R(r), then a global array of size 3K is needed. Altogether, 24M + 3K storage locations 
are needed for the surfaces Pi and the distribution R(r). This information is all that 
is needed to obtain the transformation and its first two derivatives. The calculation 
is obtained directly from Eq. (7) and its first two derivatives. If the transformation 
alone were desired, then only 8M + K storage locations would be required; the com- 
putation (of Eq. (7a)) would require only 18 multiplies and 9 additions or subtractions. 
In the cases with the elliptic examples (Figs. 2-14), the transformation and its first 
two derivatives were each computed in slightly less than .07 seconds on the CDC 7600. 

A BRANCH CUT 

In each of the coordinate systems in Figs. 2-14, a family of closed coordinate 
surfaces were generated around an ellipse. The elliptical surface was chosen for 
simplicity; it also remained constant throughout the examples so that the various 
properties of the coordinate generation procedure could be easily compared. Further 
applications to a number of other closed surfaces is a straightforward matter. In 
this regard, a direct application to a symmetric Joukowski airfoil is interesting since 
the result is very close to that obtained from the Joukowski transformation; both 
coordinate systems leave the airfoil surface orthogonally, and then rapidly approach 
a polar system as distance from the airfoil surface is increased. However, for high 
Reynolds number flows, each of these coordinate systems is unsuitable. The problem 
occurs because a narrow wake region is anticipated. As the wake extends further into 
the far field, a nearly polar system will not yield enough resolution. A partial remedy 
would be to create an “angular” distribution so that more points are attracted to the 
wake. But this, obviously, has its limitations. An alternative and attractive approach 
is to form a branch cut along the anticipated wake region. To illustrate this approach, 
a coordinate system will be generated for a high Reynolds number nonlifting sym- 
metric Joukowski airfoil. The nonlifting assumption means that the wake will follow 
a straight horizontal line from the airfoil trailing edge into the far field. The modi- 
fication for curved wakes is, of course, a simple matter. 

For the Joukowski airfoil with branch cut, the four surface transformation of 
Eq. (7) is applied with r2 = l/2. The inner bounding surface P, consists of both the 
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airfoil contour and the wake line. The line is to be the branch cut. As such, it is 
considered as two lines which happen to be coincident. One line is assumed to connect 
with the top of the airfoil contour; the other, with the bottom. With this assumption, 
the lines can be viewed as if one is, in some sense, above the other. This is consistent 
with the notion of a branch cut. The orientation of P, is now chosen so that, with 
increasing parameter values, the contour is traversed in from the far field along the 
top line, over the airfoil contour from the top to the bottom, and finally back along 
the bottom line. The construction of the parameterization comes from that of a 
temporary contour. In the same manner as in the elliptical cases, this is chosen to be 
a fixed distance along an outward unit vector field. As before, the pairing along the 
vector field is used to assign parameter values from the temporary surface to P, . In 
addition, the parameterization along the wake is chosen to expand into the far field 
at a prescribed exponential rate. This is a smooth expansion from an arc length 
(via cumulative chordal distances) parameterization along the temporary contour. 
Since the far field end point for each wake line is the same, it is also clear that any 
uniform discretization of the parameter will yield a mesh in which points on the top 
and bottom lines are aligned. 

The innermost surface P, and the outer bounding surface P, are constructed from 
the unit vector field along P, . Between the airfoil maximum and minimum, this 
vector field points in the outward normal direction. In the remaining portions, it 
points in the vertically upward and downward directions for the top and bottom, 
respectively. Along the top and bottom of the wake line, the outer bounding surface 
is generated at a fixed distance along the vector field. The result is a pair of lines; 
each is parallel to the wake line and at the specified distance from it. Next, the distances 
along the vector field are determined so that these lines are extended to lie above and 
below the airfoil maximum and minimum points. From here, the distances are 
computed so that the lines are smoothly joined as the front part of the airfoil (between 
maximum and minimum points) is traversed. This can be accomplished with a linear 
interpolation in the parameterization of P, . Altogether, the outer bounding surface 
is generated as a discretized arc of data points surrounding the airfoil and its wake 
line. The innermost intermediate surface is also generated as a discretized arc. How- 
ever, it is simply taken at a fixed distance along the unit vector field to P, . In a similar 
manner, the outermost intermediate surface is generated at a fixed distance along 
the inward unit normal vectors to P, . 

Associated with the data points for the outer bounding surface, there must be a 
parameterization. For a uniform distribution in front, an arc length parameterization 
is used from the point over the trailing edge to the point under it. To obtain the wake 
expansion, translated versions of the wake parameterizations from P, are attached 
to either end. The result is a smooth parameterization since the original expansion 
was from arc length. However, the range of the parameter is too large. To correspond 
with the range of the inner surface parameterization, it must be normalized. But 
then the wake expansion rates would differ by a constant between inner and outer 
bounding surfaces. This, however, is not suitable when a Cartesian mesh is desired 
in most of the wake region. A remedy is to reparameterize the inner bounding surface 
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so that the wake expansion rates coincide beyond a certain specified point. This can 
be accomplished with a blended parameterization. If (ti, ,..., rinr) is the parameter 
sequence for the data sequence (PiI ,..., PiN), then the blend is of the form 

[hd,, + (1 - 4) t41 ,..., h,vkv + (1 - 44 t4,vl (28) 

where 0 ,( hi < 1 forj = 1,2,..., N. The sequence (h, ,..., hN) is an evaluation of some 
continuous real valued function at each surface data point. Along the leading edge, 
it is a constant between the points of airfoil maximum and minimum; along the 
Cartesian part, zero. The constant here can be chosen to minimize airfoil mesh 
eccentricity. 

With the respective parameterized surfaces, the coordinate system is obtained 
directly from Eqs. (7) and (23). The example, illustrating the above, was executed 
for a symmetric Joukowski airfoil with a unit length and a thickness of 0.1 units. 
Other parameters consisted of a wake extension of 9.0 units, a pseudo-radial extension 
of 4.0 units, inner surface displacements of .66667 units from each boundary (along 
the respective unit vector fields), a specification for Cartesian coordinates to start 
three units beyond the trailing edge, 101 arcwise mesh points, 20 pseudo-radial mesh 
points, an exponential wake expansion rate of 0.3, and a specification for one half 
of the mesh points to resolve one quarter of the outward distance. The latter speci- 
fication was chosen to be mild so that the properties of the outward distribution (from 
Eq. (23)) could be graphically examined with a small number of mesh points. For 
actual applications to high Reynolds number calculations, the specification of greater 
resolution is a trivial matter. The resulting coordinate system is displayed in Fig. 15. 
A detailed view of the leading edge region is given in Fig. 16. From the figures, the 
specified properties are clearly evident. Along the bounding surfaces, the coordinates 
are orthogonal except for a specified mild shear on the rear of the airfoil. The specified 
outward distribution of coordinate arcs was accomplished from Eq. (23) applied 
to the transformation (Eq. (7)) with uniformity (S,(r) = r) satisfied in most regions 

FIG. 15. Coordinate system for a Joukowski airfoil with a branch cut. 
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FIG. 16. A detailed view of the coordinates near the airfoil surface. 

and closely approximated elsewhere. Computed parameters for Eq. (23) were 
m = .175 and D = 2.25. In addition, the airfoil mesh eccentricity was no worse 
than 1.47 with a blending constant of 0.25 in Eq. (28); the largest deviation from ortho- 
gonality, for the entire mesh, was 18 degrees off of 90; and the total computation time 
was 0.07 seconds on the CDC 7600. 

As a matter of comparison, one can examine the airfoil coordinates which were 
generated by Steger (Ref. [8]) and by Thompson et al. (Ref. [7]). In each case, a 
pair of Poisson equations were solved (in inverse form) for the coordinates about an 
airfoil with a linear cut. The source terms for the Poisson equations were used to locally 
vary the solutions between harmonic, subharmonic, and superharmonic functions. 
These source terms were called “forcing functions” since their effect was to push 
coordinate curves around within the transformed region. The basic mechanism for 
this control is the corresponding maximum (minimum) principle. A maximum 
(minimum) principle is also essential as a guarantee that coordinate curves of the same 
family do not intersect. The remaining control on the coordinates is the type of 
boundary condition which is applied. Unlike the forcing functions, this is not a direct 
control over general clustering. However, since the system is second order, each 
boundary point can have only one condition. 

Theconditionsapplied by Stegerconsisted of a specificationof locationsalongthecut 
and along the boundaries of the transformed domain. These specified locations resulted 
in Dirichlet boundary conditions everywhere. As a consequence, there was little 
control over the manner in which coordinate curves left the boundaries. This is parti- 
cularly evident on examination of the cut along the wake line. Coordinate curves 
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crossing the cut are clearly not differentiable; consequently, the coordinate system is 
not smoothly joined to itself, as might be desired. To correct for the deficiency in 
smoothness, either a clever application of forcing functions or a change in boundary 
conditions is needed. Since the effect of forcing functions depends upon the solution 
to a system of partial differential equations, it appears that this control would be 
costly and difficult to implement for the purpose of properly aligning mesh angles 
and distributions along the wake cut. A change in boundary conditions appears to 
be more promising. Because the location of the wake line and its mesh distribution are 
specified, there would be a temptation to replace the Poisson equations with some 
fourth order system. The desire, here, would be to doubly specify boundary conditions 
without over determining the system. However, if this were to be done, then the 
maximum (minimum) principle would probably be lost. The remaining alternative is 
not to specify either the wake cut or its mesh distribution; but instead, to specify 
only periodic information. The location of the cut is then determined from a solution 
to Poisson equations with periodicity conditions for the cut and Dirichlet conditions 
elsewhere. A coordinate system, generated with these conditions, was presented by 
Thompson et al. (Ref. [7, Fig. 31). In their example, the cut was, indeed, a branch cut; 
in addition, by problem symmetry it was a straight line. The distribution of points 
along this line were indirectly imposed from the Dirichlet conditions on the outer 

FIG. 17. A (%tesian juncture between four systems. 
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coordinate boundaries over and under the wake. As such, there was a certain amount 
of coordinate distortion near the outer boundaries. Moreover, without absolute 
symmetry (e.g., an asymmetric airfoil), the branch cut will not be a straight line. 
Instead, it will be some curve determined by the solution of the Poisson equations 
for the prescribed boundary conditions. 

By contrast, the coordinates generated by the multisurface method are much easier 
to control. In the airfoil example, there were controls on boundary locations and 
angles, a control on a smooth blendinto a Cartesian mesh, and a control on the interior 
mesh distribution. In the latter control, an outward mesh distribution was prescribed 
so that not only were points more concentrated near the airfoil and its wake but also 
their local distribution was nearly uniform. The result, as readily observed from 
Figs. 15-16, was an essentially uniform mesh in the vicinity of the wake line. 

Due to the outer boundary specification and to the blend into a Cartesian mesh, 
there are several interesting applications in addition to that of an isloated airfoil 
problem. From the outer boundary specification, it is possible to vertically stack the 
coordinate system to obtain a composite system which is smoothly joined together 
and which can be used for applications to a cascade of airfoils. From the blend into 
a Cartesian mesh, it is possible to smoothly join the coordinates with its reflection 
about the vertical axis at the end of the wake line. In this case, the composite system 
can be used for applications to doubly connected bodies. Moreover, by vertically 
stacking the reflected system, the resulting composite system can be used for a cascade 
of doubly connected bodies. An illustration is given in Fig. 17. 

A THREE DIMENSIONAL EXAMPLE 

For ease of exposition and for simplicity, the presentation of the general multi- 
surface transformation was given for only two dimensions. In two dimensions com- 
puted results can be graphically displayed without confusion, the surfaces Pi in Eq. (3) 
are easily generated, and each surface can be parameterized from a simple constructive 
process. The theoretical development, however, is also valid for three dimensions; 
the only modification in the development is the trivial replacement of the surface 
parameterization t by a parametric pair (s, t). In three dimensions surface generation, 
surface parameterization, and graphical displays are all more complicated. Rather 
than attempt a resolution of these complications, the general multisurface trans- 
formation in the four surface mode (Eq. (7) with s, t in place oft) will be applied to 
a case where the surface representation and parameterization can be analytically 
defined and where the results can be presented analytically instead of graphically 
or numerically. 

Suppose that the coordinates are to be generated between the two bounding sur- 
faces consisting of the two ellipsoidal sections 

ZK = Cx[l - (2)” - (e)e]l’a 
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where the inner surface corresponds to K = I; the outer surface, to K = 2. In the 
x-y plane beneath the respective ellipsoids, the conformal transformation 
xx + yg(- 1)112 = aK cosh(b,s + t(- l)lj2) yields a coordinatization of the resulting 
elliptical regions. This is given by 

xK = UK cash (&s) cos -+- t i 1 
(30) 

y, = aK sinh (&s) sin % t t 1 

where bK = tanh-‘@3,/A.), A, > BK , a, = A,/cosh bK,O <s, t < I, and K= 
1,2. For a fixed point (s, t), there are two points in the x-y plane corresponding to 
K = I,2 for inner and outer ellipsoids. Each of these points can be vertically lifted 
to its corresponding ellipsoid by a direct substitution of Eq. (30) into Eq. (29). 
Provided that the CK are not excessively large, the respective lifts will retain the 
fairly good distribution of points determined by the transformation of Eq. (30). In a 
discrete sense, the pointwise distributions can be examined by the transformation of 
the points which determine a uniform partition of the unit square 0 < s, t < 1. For 
a good distribution, the corresponding points should not be unnecessarily clustered 
in any given location on the ellipsoidal surfaces. A good example of unnecessary 
clustering occurs in spherical coordinates at the respective poles on the spherical 
surfaces. 

To obtain the three-dimensional coordinates from Eq. (7), the surfaces Pj are simply 
taken as functions of (s, t) rather than of t alone. The bounding surfaces are now 
readily specified as P,(s, t) = (xr(s, t), yr(s, t), zr(x,(s, t), yr(s, t))) and P,(s, t) = 
(x2(4 0, ~26, j)> z,(x2(s, tL ~2(4 j>N. A s in the two-dimensional case, the intermediate 
surfaces P, and P3 can be conveniently constructed from the bounding surfaces. 
Along the bounding surfaces, the first step is to establish a field of orthonormal frames 
composed of unit tangent and normal vectors. Relative to these frames, specifications 
can be given for the angles at which coordinate curves leave the boundaries. If only 
orthogonality is to be imposed, then it is sufficient to compute only the unit normal 
vectors since the tangential directions would not be used. For the ellipsoidal surfaces, 
the respective normals are given by 

nK = (- l)K+l (xK/AK~) i, + (YKIBK~) iv + @KICK’) is 
KxK/&“)~ + ( YKIBK~)~ + (zKICK~)~I~‘~ (31) 

where i o , i, and i, are unit vectors in the respective Cartesian directions. The power 
of -1 adjusts for the surface orientations so that nI points outward while n2 points 
inward. With boundary orthogonality specified, the intermediate surfaces are given 
by P,(s, t) = Pr(s, t) + D,n,(s, t) and P,(s, t) = P,(s, t) + D2n2(s, t). The factors 
D, and D, are the respective distances for which the intermediate surfaces are dis- 
displaced from the corresponding bounding surfaces. When the displacements are 
constants and when r2 = l/2 in Eq. (7)j the coordinates are orthogonal at the boun- 
ding ellipsoids but are not uniformly distributed in between. This same situation 
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occurred with the generation of the two-dimensional coordinates between the ellipse 
and the circle in Fig. 7 as compared to the good approximation to uniformity in 
Fig. 3. Uniformity, however, can be precisely specified by taking D, and D, to be 
functions of (s, t) which are determined by the condition Bl = B, = l/3. With 
r2 = l/2, an application of Eqs. (13)-(14) yields the displacement functions 

II p4 - PI II2 
DK = 1611~ . (P, - PII1 

(32) 

for K = 1,2. When the pieces are assembled, a coordinate transformation is obtained 
from the unit cube 0 < r, s, t < 1 into the region between the ellipsoids; in summary, 
the coordinates are well distributed over the constant r surfaces, enter the bounding 
surfaces orthogonally, and are uniformly distributed in the r-direction. Should a 
nonuniform distribution be desired in the outward r-direction, then the r-variable 
can be replaced by any function R(r) which monotonically increases from 0 to 1. 
Due to the uniformity in the basic transformation, the effect of the distribution 
function R(r) is to directly proportion the points in the outward direction. An example 
of a distribution function, which is useful for the resolution of attached boundary 
layers, is the distribution of Eq. (23). 

INTERMEDIATE SURFACES AND THE PREVENTION OF SINGULARITIES 

The multisurface transformation was presented in general (Eq. (3), with t taken as 
a vector) and was then specialized to the cases with polynomial interpolants for two, 
three and four surfaces. In correspondence with the number of surfaces, there were 
an identical number of conditions which could be specified on the boundaries. For 
two surfaces (Eq. (4) and Ref. [ll]), there was only one condition per surface. In 
Ref. [ II], the conditions were orthogonality on one surface and positions on the other. 
With three surfaces (Eq. (5)), an extra condition could be specified on one boundary; 
with four surfaces (Eq. (7)), two conditions, per boundary. In addition to the speci- 
fication of conditions along the boundaries, other controls were also developed. 
These consisted of controls over surface distributions, distributions between surfaces, 
and the shapes of curves connecting the bounding surfaces. In the four surface trans- 
formation of Eq. (7), the latter control was on the extent that near linearity persisted 
as the boundaries were left. Bounds on the nearness to linearity were given in Eqs. (19)- 
(21) and were illustrated graphically in Figs. 3-12. With the lengths of near linearity 
controlled, the only possibility for such a coordinate curve (parameterized by r) 
to inflect or bend would be in the remaining region. Consequently, with specified 
boundary orthogonality, this control could be used to cause the r-coordinate curves 
to bend earlier in regions near a highly concave part of a boundary. To prevent coor- 
dinate curves of the same family from intersecting, and thus, to insure a nonvanishing 
Jacobian, an algorithm for the selection of the appropriate control parameters would 
have to be developed. The selection process is essentially tied to the generation of 
intermediate control surfaces (P2 and P, of Eq. (7)) which are more sensitive to the 
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geometry of the bounding surfaces. A secondary problem would then be to retrieve 
uniformity by use of Eq. (14). Further control would also be available with an increase 
in the number of intermediate control surfaces (i.e., n > 4 in Eq. (3)). However, to 
present the basic multisurface transformation in the simpliest possible manner, a 
discussion and analysis was omitted for cases with more than four surfaces in Eq. (3) 
and for cases where intermediate surfaces would have to be more closely adjusted to 
boundary geometries. Instead, the four surface transformation was discussed, 
analyzed, and applied to cases where the intermediate surfaces (with the exception of 
the three-dimensional example) were constructed as constant displacements (c.f., 
Table I) from the boundaries. To insure a nonvanishing Jacobian in Eq. (7) the 
bounds in Eqs. (19)-(21) should be used to develop suitable displacements in situations 
where specifications of boundary geometry, positions along the boundary, and 
angles from the boundary altogether would lead to possible problems. These problems 
clearly would not occur with methods based upon elliptic partial differential 
equations which have a maximum (minimum) principle (Refs. [5-lo]). However, in 
those methods both positions along the boundaries and angles from the boundaries 
cannot be simultaneously specified. If angle specifications in Eq. (7) were, for example, 
relaxed in regions near high boundary concavity, then the problem of a possibly 
vanishing Jacobian could be trivially overcome without any determination of suitable 
displacements. 

Another type of singularity, that can occur, is an ill-defined Jacobian due to a 
deterioration in boundary smoothness. Typical examples are boundaries with slope 
discontinuities. However, if the boundary is to be a ccordinate curve, then the singu- 
larity would occur with any method for coordinate generation. To remove it, some 
sort of smoothing would be required. 
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